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Similarly in the phase V ~ phase IV transformation 
the anions at F could have aligned themselves on the 
(220)v planes rather than the (220)v planes. The result 
would then be a structure for phase IV in which the 
c axis being the same as before, the a and b axes are 
interchanged. It is possible that with nucleation of the 
transformation in different parts of the crystal, both 
kinds of phase IV domains are present at the end of 
the transformation. The two domains would be related 
by an element of non-crystallographic symmetry paral- 
lel to A'C'  in Fig. 1. 

Conclusion 

An attempt has been made to consider the sequence of 
transformations, V --~ IV -+ II, in ammonium nitrate 
crystals on the basis of the ideas of martensitic trans- 
formations in metals. A similar attempt on the thermal 
cycle of phase transformations in potassium nitrate 
was recently published. In particular the aim here was 
to show that on a least-motion hypothesis (i.e. the 
shuffles are least-motion processes consistent with sym- 
metry and accepted interatomic distances) the higher- 
symmetry phase structure may be predictable solely 
from its unit-cell dimensions and space-group sym- 
metry if the low-symmetry phase of the transformation 
has a completely determined crystal structure. These 
considerations yield an adequate explanation of twin- 
ning observed in the transitions. The ions are treated 
here as rigid groups. It would be interesting indeed if 
a structure with high pseudo-symmetry is solved and 

the structure of the result of a possible phase trans- 
formation were predicted and later succesfully verified. 

The author wishes to thank the Deutsche Akade- 
mische Austauchdienst for a visiting fellowship in 
Frankfurt, where this work was done. 
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The Squared Power Method to Fit a Plane to a Set of Points* 
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The 'power method' provides a computationally easy method for the determination of the best plane 
through a set of points. By repeatedly taking squares, one rapidly obtains the maximum eigenvalue and 
corresponding eigenvector of the inertia tensor. The result is the least-squares result when the points 
have independent, isotropic weights. 

Introduction 

We present a simple alternative to the use of least- 
squares techniques (Scheringer, 1971) for the deter- 
mination of the best plane through a set of points. 
Though the basic method presented is old (National 

* Research performed under the auspices of the U.S. 
Energy Research and Development Administration, supported 
by NSF contract AG-370. 

Physical Laboratory, 1957) (NPL) and the power 
method has been discovered by crystallographers more 
than once (Schomaker, Waser, Marsh & Bergman, 
1959), its advantages seem not to have been fully ex- 
ploited to date. This may well be due to some problems 
which arise from the particular formulations of the 
technique chosen in the past. In particular, the method 
can be subject to slow convergence and capture by the 
wrong eigenvector. When applied in other eigenvalue 
searches where negative eigenvalues arise, it can suffer 
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from oscillation. Following NPL, we overcome these 
problems simply by repeated squaring, rather than 
forming successive powers, of the inertia tensor. 

Method 

Obtaining largest eigenvectors 
Consider a matrix A. Assume for the moment it is 

real and symmetric. Take the series A, AZ, A4,AS,. . . ,  
A zN, . . . ,  each the square of the preceding term. Then 
we can demonstrate that the series rapidly approaches 
a matrix in which only the eigenvector(s) of the largest 
eigenvalue appears. For computational convenience, 
the series can be renormalized at each step. This avoids 
underflow or overflow. 

For proof, one need only recall that A can be looked 
at as acting on the space with its eigenvectors as basis 
vectors; i.e. with basis vectors el, • •. ,  e, such that Ae~ = 
2#~. If cr is the orthogonal matrix which transforms to 
this new basis, then 

A = 6A'6-1 

where A' is diagonal with the eigenvalues as the diag- 
onal elements. Then, since 

we have 

Now (A') 2N is 

A 2 = 6A'6-  ~6A'6 
= 6 ( A ' ) 2 ¢ r  - 1  , 

A2N= 0"(A')2Nff -1" 

0 0 
;~ 0 
0 ~,jN 

• 1 
which is rapidly dominated by its largest diagonal ele- 
ment(s). If all the other diagonal elements were actually 
zero, then, in terms of the original basis, the resulting 
matrix would have rows (and columns) which are linear 
combinations of the eigenvectors corresponding to the 
largest eigenvalue. 

Thus A 2N approximates such a matrix. Convergence 
goes as (2~/20) 2n where 20 is the largest eigenvalue and 
21 is the next smaller one. Note that any scaling we do 
while taking powers to keep elements in bounds does 
not disturb the result, since we are looking at ratios 
of elements' magnitudes, not their absolute size. 

We have made strong use of the symmetry of the 
matrix in the above discussion. The method is valid 
for a larger range of matrices, in particular for those 
in which there is a single eigenvector for a unique 
eigenvalue of largest magnitude essentially the same 
analysis applies. For an eigenvalue of multiplicity 
greater than one, there are problems in non-symmetric 
matrices in deciding whether the process has converged. 
However, the powers of the matrix will approach a 
sequence of matrices in which the columns are linear 

combinations of the eigenvectors of the eigenvalues of 
largest magnitude. One can see this by using a similar 
approach in choosing a basis from the eigenvectors 
(and bases of the eigenspaces where necessary) to ob- 
tain a slightly modified Jordan normal form, in 
which the diagonal elements are the eigenvalues and 
the off-diagonal elements are not necessarily one. The 
blocks without off-diagonal terms will behave as above, 
while those with off-diagonal terms will be dominated 
by them, leaving fewer independent vectors in the final 
matrix. 

Similar arguments, of course, apply to simply taking 
successive powers, but taking squares produces more 
rapid convergence, and in eigenvalue problems where 
negative eigenvalues arise (unlike best-fit planes) tak- 
ing a square prevents oscillation of sign. If instead of 
taking powers of the entire matrix, one followed just 
a single vector with those powers applied, and that 
vector had no component in the direction of the eigen- 
vector of the largest eigenvalue, it would lead to the 
eigenvector of a smaller eigenvalue rather than the 
desired result. 

Relationship to best-fit plane 
As has been noted by others (Schomaker et aL, 

1959), now consider a collection of points xt of 'mass' 
m~. The plane that best approximates these points may 
be taken as the one whose normal is in the direction 
providing maximal moment of inertia about the center 
of mass (or minimal r.m.s, deviation of mass from the 
plane). The 'mass' might be taken as true mass, or unit 
mass, or as an uncertainty measurement (Hamilton, 
1961). In any case we need only compute an inertia 
tensor and find the eigenvector for its largest eigen- 
value. Similarly, for the best line, the smallest eigen- 
value is needed, which may be found by finding the 
largest eigenvalue of the inverse of the inertia tensor. 

Specific details of  the power method 
Let m~ be the masses of points (x~,y~,z~). Then the 

inertia tensor is 

[ Em,(y~+z~) 
T =  [ -  ~,m~xtyl 

\ -~ ,m ,x , z ,  

-~m~xty~ -Em~xlzl 
Em,(x~ + z~) - Em,y,z, I 

- ~,m,y,z, Em,(x~ + y~)]. 

Note that the matrix is symmetric. 
Then we iterate on the following: (1) Square the 

matrix. (2) Multiply or divide by a suitable value, so 
that the elements stay within a reasonable range. 
(3) Stop when two successive it.erations have column 
vectors which have not changed in direction by more 
than the desired error. Steps 2 and 3 fit together best 
if we normalize by a quantity explicitly computed from 
the elements of the matrix, say the trace of the matrix. 
After one squaring, the trace can be zero only if the 
eigenvalues of the square matrix are all zero. This in- 
volves fewer computations than use of the largest ele- 
ment. 
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Take one of the non-zero column vectors as an eigen- 
vector of the largest eigenvalue. The eigenvalue itself 
may be found by applying the original matrix to such 
a vector, and computing the ratio of the lengths. It 
should be noted that the multiplication by the matrix 
corresponds precisely to a shift generated by taking 
the derivative for least-squares refinement of unit vec- 
tors to the desired plane. One may test for uniqueness 
of the eigenvector by finding the components of the 
remaining non-zero column vectors of the matrix per- 
pendicular to the one chosen. 

The authors are deeply indebted to V. Schomaker 
for his criticism and sharp eye for sloppy mathematics. 
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The Debye-Waller factor of lead has been measured by neutron diffractometry at five temperatures in 
the range 296-550 K. The results are analysed in terms of a central-force pair-interaction model, and 
the anharmonic pair potential obtained is significantly different from that derived from previous X-ray 
measurements. Several methods of calculating TDS contributions to powder diffraction peaks are 
examined, and their results are compared. 

1. Introduction 

In a recent study of the X-ray Debye temperatures 
o , ( r )  of cubic materials, Killean (1974) has shown 
that the variation of the Debye-Waller factor, B(T), 
of aluminum with temperature T can be adequately de- 
scribed by nearest-neighbour central-force (NNCF) 
pair interactions. This work has been extended to other 
f.c.c, metals (Killean & Lisher, 1975a), and to elastic- 
constant Debye temperatures of f.c.c, and b.c.c, ele- 
ments (Killean & Lisher, 1975b). In all cases good 
agreement was found between theoretical predictions 
and the experimental data. A new criterion for melting 
was proposed (Killean & Lisher, 1975b) and this cri- 
terion, when applied to the elastic-constant data, 
yielded excellent agreement with the observed melting 
temperatures for the majority of materials studied. 
This melting criterion, however, was less successful 
when used with the X-ray data and it was not clear 
whether this was due to errors inherent in the X-ray 
measurements, or to shortcomings in the proposed 
theory. To resolve this point, a series of neutron dif- 
fraction studies of f.c.c, heavy metals is being under- 
taken, and the first of these experiments is reported in 
the present paper. 

The neutron diffraction technique has several ad- 
vantages over the X-ray method as a means of measur- 
ing absolute Debye-Waller factors. In the X-ray case 
there are problems such as uncertainties in the atomic 

scattering factors, extinction and specimen misalign- 
ment which prevent an accurate determination of 
B(T) directly from the slope of a 'Wilson plot' of In I 
against sin 2 0/22. Several methods of minimizing the 
errors in the X-ray technique have been proposed, but 
these generally presuppose the knowledge of a relation 
between O,(T) and T and are thus unsatisfactory as a 
means of determining absolute Debye temperatures. 

A Wilson plot may be used in the analysis of neutron 
diffraction data from powder samples, since the con- 
stancy of nuclear scattering lengths and the elimination 
of significant extinction in the specimen remove two 
principal sources of error which are 0-dependent. A 
major drawback of the powder technique is the pos- 
sibility of preferred orientation, and subsequent large 
changes in the orientation of the grains due to sintering 
at high temperatures. This effect may be reduced by 
annealing the powder before performing the diffrac- 
tion measurements with the sample rotating or oscil- 
lating. 

2. Experimental 

The sample used in the present study was lead powder, 
of maximum particle size 150 am and purity 99.999 %, 
which was obtained commercially from Goodfellow 
Metals Ltd. During the diffraction measurements this 
powder was contained in an aluminum can of diameter 
16 mm and wall thickness 0-25 mm. 


